2022
DOI: 10.18517/ijaseit.12.6.16226
|View full text |Cite
|
Sign up to set email alerts
|

Comparing Restricted Boltzmann Machine – Backpropagation Neural Networks, Artificial Neural Network – Genetic Algorithm and Artificial Neural Network – Particle Swarm Optimization for Predicting DHF Cases in DKI Jakarta

Abstract: Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans and strategies. Previous research shows that temperature, rainfall, and humidity indirectly affect DHF spread patterns. Therefore, this research uses and compares three machine learning models-restricted Boltzmann machine-backpropagation neural network (RBM-BPNN),… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 18 publications
0
0
0
Order By: Relevance