Aircraft cabins have high occupant densities and may introduce the risk of COVID-19 contamination. In this study, a segment of a Boeing 767 aircraft cabin with a mixing type of air distribution system was investigated for COVID-19 deposition. A section of a Boeing 737-300 cabin, featuring four rows with 28 box-shaped mannequins, was used for simulation. Conditioned air entered through ceiling inlets and exited near the floor, simulating a mixed air distribution system. Cough droplets were modeled using the Discrete Phase Model from two locations: the centre seat in the second row and the window seat in the fourth row. These droplets had a mean diameter of 90 µm, an exhalation velocity of 11.5 m/s and a flow rate of 8.5 L/s. A high-quality polyhedral mesh of about 7.5 million elements was created, with a skewness of 0.65 and an orthogonality of 0.3. The SIMPLE algorithm and a second-order upwind finite volume method were used to model airflow and droplet dynamics. It was found that the ceiling accounted for the maximum concentration followed by the seats. The concentration of deposits was almost 50% more when the source was at window as compared to the centre seat. The Covid particles resided for longer duration when the source was at the centre of the cabin than when it was located near the widow.