Rationale
Neuroactive steroids and benzodiazepines can positively modulate GABA by acting at distinct binding sites on synaptic GABAA receptors. Although these receptors are thought to mediate the behavioral effects of both benzodiazepines and neuroactive steroids, other receptors (e.g., extrasynaptic GABAA, NMDA, σ1, or 5-HT3 receptors) might contribute to the effects of neuroactive steroids, resulting in differences among positive modulators.
Objective
The current study established the neuroactive steroid pregnanolone as a discriminative stimulus to determine whether actions in addition to positive modulation of synaptic GABAA receptors might contribute to its discriminative stimulus effects.
Methods
Four rhesus monkeys discriminated 5.6 mg/kg pregnanolone while responding under a fixed-ratio 10 schedule of stimulus-shock termination.
Results
Positive modulators acting at benzodiazepine, barbiturate, or neuroactive steroid sites produced ≥80% pregnanolone-lever responding, whereas drugs acting primarily at receptors other than synaptic GABAA receptors, such as extrasynaptic GABAA, NMDA, σ1, and 5-HT3 receptors, produced vehicle-lever responding. Flumazenil antagonized the benzodiazepines midazolam and flunitrazepam, with Schild analyses yielding slopes that did not deviate from unity and pA2 values of 7.39 and 7.32, respectively. Flumazenil did not alter the discriminative stimulus effects of pregnanolone.
Conclusion
While these results do not exclude the possibility that pregnanolone acts at receptors other than synaptic GABAA receptors, they indicate a primary if not exclusive role of synaptic GABAA receptors in its discriminative stimulus effects. Reported differences in the chronic effects of benzodiazepines and neuroactive steroids are not due to differences in their actions at synaptic GABAA receptors.