2022
DOI: 10.1038/s41598-022-20122-w
|View full text |Cite
|
Sign up to set email alerts
|

Comparing the performance of Kernel PCA Mix Chart with PCA Mix Chart for monitoring mixed quality characteristics

Abstract: Along with the development of information and technology, the quality characteristics of a product cannot be monitored separately in the different types of control charts. In the past, conventional control charts were developed to monitor only one type of quality characteristic. The variable control charts are used to observe the variable or metric quality characteristics. Meanwhile, in monitoring non-metric characteristics or categorical data, attribute control charts are employed. To accommodate these two ty… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2023
2023
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(5 citation statements)
references
References 25 publications
0
3
0
2
Order By: Relevance
“…The study also conducts a sensitivity analysis to provide insights into the impact of changes in the design parameters on the performance of the np chart. By identifying the significant factors that influence the expected total cost, the study offers valued (10) Practical implications. The findings of this research hold significant practical implications for manufacturing organizations and service sectors.…”
Section: Theoretical Contributionmentioning
confidence: 99%
See 1 more Smart Citation
“…The study also conducts a sensitivity analysis to provide insights into the impact of changes in the design parameters on the performance of the np chart. By identifying the significant factors that influence the expected total cost, the study offers valued (10) Practical implications. The findings of this research hold significant practical implications for manufacturing organizations and service sectors.…”
Section: Theoretical Contributionmentioning
confidence: 99%
“…Even though Shewhart charts assess the expenses implicitly by selecting n and h, the resultant charts are not guaranteed to be economically optimal.The performance of statistically designed charts is typically determined in terms of the Average Run Length (ARL) or Average Time to Signal (ATS) where ATS = ARL × h 8,9 . The out-of-control ARL can be defined as the average number of samples required to detect a process shift after it occurs [10][11][12] . Similarly, the out-of-control ATS can be defined as the average time required to detect a process shift after it occurs [13][14][15] .…”
mentioning
confidence: 99%
“…Among the contributions related to control charts that incorporate multivariate techniques, the STATIS-based chart for monitoring batch processes in nonparametric environments stands out [28]; robust bagplot diagrams using Dual STATIS and Parallel Coordinates [29]; the PCA-based multivariate control chart for mixed data, which applies a combination of Principal Component Analysis and Multiple Correspondence Analysis [30]; the Density-sensitive Novelty Weight control chart (DNW) that uses the k-Nearest Neighbor (kNN) algorithm [15]; the Kernel PCA Mix-based chart [31,32]; the T 2 chart based on a combination of PCA for continuous and qualitative data with outlier detection [33]; and the PCA-based control charts for nonparametric environments [15,34].…”
Section: Introductionmentioning
confidence: 99%
“…Poisson (Patel, 1973), Gráfico D 2 de control de atributos multivariante (Mukhopadhyay, 2008), Gráfico de control de calidad difuso multivariante (Taleb, Limam y Hirota, 2006), Gráfico de control multivariante basado en la combinación de PCA para características de calidad de atributos y variables (Ahsan, et al, 2018), gráfico T 2 basado en PCA Mix con límite de control de densidad de Kernel para mezclas de datos categóricos y continuos (Ahsan, et al, 2022), PCA Mix Chart para monitorear las características de calidad mixta en presencia de datos atípicos (Ahsan, et al, 2021), Gráfico de control multivariante no paramétrico para variables numéricas y categóricas , el Gráfico de control estadístico de procesos multivariantes para datos cualitativos (Rojas-Preciado, et al, 2023).…”
Section: 225unclassified
“…El PCA Mix es eficaz para monitorear simultáneamente variables numéricas y categóricas en un solo gráfico, no obstante, cuando éstas tienen una proporción desequilibrada se producen algunas dificultades. Para superarlas, Ahsan, et al (2022) desarrollaron el gráfico de control Kernel PCA Mix. En este gráfico, los datos categóricos se transforman en variables ficticias (dummy), después se combinan con los datos numéricos para dar lugar a la función Kernel.…”
Section: Control Estadístico De Procesos Multivariantes Con Análisis Deunclassified