This paper reviews the different techniques available and competing for full-field digital mammography. The detectors are described in their principles: photostimulable storage phosphor plates inserted as a cassette in a conventional mammography unit, dedicated active matrix detectors (i.e., flat-panel, thin-film transistor-based detectors) and scanning systems, using indirect and direct X-ray conversion. The main parameters that characterize the performances of the current systems and influence the quality of digital images are briefly explained: spatial resolution, detective quantum efficiency and modulation transfer function. Overall performances are often the result of compromises in the choice of technology.