IMPORTANCE Understanding the differences and potential synergies between traditional clinician assessment and automated machine learning might enable more accurate and useful suicide risk detection.
OBJECTIVETo evaluate the respective and combined abilities of a real-time machine learning model and the Columbia Suicide Severity Rating Scale (C-SSRS) to predict suicide attempt (SA) and suicidal ideation (SI). DESIGN, SETTING, AND PARTICIPANTS This cohort study included encounters with adult patients (aged Ն18 years) at a major academic medical center. The C-SSRS was administered during routine care, and a Vanderbilt Suicide Attempt and Ideation Likelihood (VSAIL) prediction was generated in the electronic health record. Encounters took place in the inpatient, ambulatory surgical, and emergency department settings. Data were collected from June 2019 to September 2020. MAIN OUTCOMES AND MEASURES Primary outcomes were the incidence of SA and SI, encoded as International Classification of Diseases codes, occurring within various time periods after an index visit. We evaluated the retrospective validity of the C-SSRS, VSAIL, and ensemble models combining both. Discrimination metrics included area under the receiver operating curve (AUROC), area under the precision-recall curve (AUPR), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). RESULTS The cohort included 120 398 unique index visits for 83 394 patients (mean [SD] age, 51.2 [20.6] years; 38 107 [46%] men; 45 273 [54%] women; 13 644 [16%] Black; 63 869 [77%] White).Within 30 days of an index visit, the combined models had higher AUROC (SA: 0.874-0.887; SI: 0.869-0.879) than both the VSAIL (SA: 0.729; SI: 0.773) and C-SSRS (SA: 0.823; SI: 0.777) models.