“…Let ℝ + be the set of all positive real numbers and ℝ * be the set of extended real numbers (Definition 2.1 page 4 [Blumenthal(1953)] pages 12-13, [Laos(1998)] pages 118-119 36 This is the method of "inscribed polygons" for calculating the length of a curve and goes back to Archimedes: [Brunschwig et al(2003) [Sherstnev(1962)], page 4, [Schweizer and Sklar(1983)] page 9 ⟨(1.6.1)-(1.6.4)⟩, [Bessenyei and Pales(2014) [Kirk and Shahzad(2014)] page 113 ⟨Definition 12.1⟩, [Deza and Deza(2014)] page 7, [Hoehn and Niven(1985)] page 151, [Gibbons et al(1977)Gibbons, Olkin, and Sobel] page 51 ⟨square-meanroot (SMR) (2.4.1)⟩, [Euclid(circa 300BC)] ⟨triangle inequality-Book I Proposition 20⟩ 39 metric space: [Dieudonné(1969)], page 28, [Copson(1968)], page 21, [Hausdorff(1937)] page 109, [Fréchet(1928)], [Fréchet(1906)] page 30 near metric space: [Czerwik(1993)] page 5 ⟨b-metric; (1),(2),(5)⟩, [Fagin et al(2003a)Fagin, Kumar, and Sivakumar], [Fagin et al(2003b) …”