2022
DOI: 10.1016/j.isci.2022.103774
|View full text |Cite
|
Sign up to set email alerts
|

Comparing transfer learning to feature optimization in microstructure classification

Abstract: Summary Human analysis of research data is slow and inefficient. In recent years, machine learning tools have advanced our capability to perform tasks normally carried out by humans, such as image segmentation and classification. In this work, we seek to further improve binary classification models for high-throughput identification of different microstructural morphologies. We utilize a dataset with limited observations (133 dendritic structures, 444 non-dendritic) and employ data augmentation via … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 19 publications
0
0
0
Order By: Relevance