The research presented in this article aimed at achieving an innovative anthropomorphic robotic arm with intelligent sensory feedback, which is remotely controlled by a human operator, using a control-glove. The movements of the human operators hand will be exactly reproduced by the manipulation robotic hand, which also provides feedback regarding the pressure confronted with and 3D visual information of the manipulation area. This will enable the possibility of complex and high precision manipulation in unfriendly and hazardous environments, without exposing the human operator to risks. Teleoperation will be carried out by means of a Multi-sensory control glove (MSG), which will enable high-precision tasks performing with almost no preliminary training required for the operator (the robotic hand having all five articulated and driven fingers and allowing human-like complex maneuvers). The MSG is equipped with position movement and acceleration sensors, and also a system for transmitting the haptic feedback to the operator, which is the first component of the telepresence implemented in the robotic system. The second component is 3D visual feedback from the operation site, using a stereoscopic HD camera mounted on the robot platform and a 3D vision helmet, with glasses containing two OLED displays for the operator. Using this kind of robotic system, the human operator can act efficiently from inside safe environment, only the robotic hand and it's mobile platform (or supporting arm) being exposed to hazardous conditions. The applications of this robotic hand could include the following domains: space exploration and working (remote operations on void space or on other planets' surface driven from human-safe environment), working in toxic atmosphere (chemically poisoned or toxic gas emanation sites); working in high radiation-level environments (like nuclear plants); working in marine applications (deep ocean exploration, repair of offshore oil platforms etc.) etc.