Analysis of Forecast Error of Monthly Streamflow with Different Forecast HorizonsThis paper addresses the problem of forecasting for monthly mean streamflow series, in which we call the forecast horizon (h), the interval of time between the last observation used in fitting the model prediction and the future value being predicted. The analysis of the forecast error is made on the basis of the forecast horizon. These series have a periodic behavior on average, ariance and autocorrelation function. Therefore, we consider the widely used approach to modeling these series that initially consists of removing the periodicity in mean and variance of the streamflow series and then calculating a standardized series for which stochastic models are adjusted. In this study we consider the series to the standard periodic autoregressive models PAR (p m ). Orders p m of the adjusted models for each month are determined from the analysis of periodic partial autocorrelation function (PePACF), using the Bayesian Information Criterion (BIC) applied to PAR models, proposed in (MecLeod, 1994) and analysis of PePACF proposed in (Stedinger, 2001). The forecast errors are calculated on the basis of parameters adjusted and evaluated for forecasting horizons h, ranging from 1 to 12 months on the
RESUMOEste trabalho aborda o problema de previsão para séries de vazões médias mensais, no qual denomina-se de horizonte de previsão (h), o intervalo de tempo que separa a última observação usada no ajuste do modelo de previsão e o valor futuro a ser previsto. A análise do erro de previsão é feita em função deste horizonte de previsão. Estas séries possuem um comportamento periódico na média, na variância e na função de autocorrelação. Portanto, considera-se a abordagem amplamente usada para a modelagem destas séries que consiste inicialmente em remover a periodicidade na média e na variância das séries de vazões e em seguida calcular uma série padronizada para a qual são ajustados modelos estocásticos. Neste estudo considera-se para a série padronizada os modelos autorregressivos periódicos PAR(p m ). As ordens p m dos modelos ajustados para cada mês são determinadas usando os seguintes critérios: a análise clássica da função de autocorrelação parcial periódica (FACPPe); usando-se o Bayesian