The present work explores the use of geophysical surveys as valuable tools for the study and sustainable management of landslides, with a particular focus on Ecuador. As an Andean country, Ecuador’s geomorphology and geology are dominated by volcano-sedimentary materials and processes, which confers a high susceptibility to landslides. In the last few years, a number of landslide events (such as those at La Josefina, Alausí, and Chunchi) have given rise to disasters with significant material damage and loss of life. Climatic events, affected by climate change, earthquakes, and human activity, are the main landslide triggers. Geophysical surveys, like seismic refraction, electrical resistivity tomography (ERT), and ground-penetrating radar (GPR), are easy and low-cost techniques that provide valuable and critical subsurface data. They can help define the failure surface, delimit the mobilized materials, describe the internal structure, and identify the hydrological and geotechnical parameters that complement any direct survey (like boreholes and laboratory tests). As a result, they can be used in assessing landslide susceptibility and integrated into early warning systems, mapping, and zoning. Some case examples of large landslide events in Ecuador (historical and recent) are analyzed, showing how geophysical surveys can be a valuable tool to monitor landslides, mitigate their effects, and/or develop solutions. Combined or isolated geophysical techniques foster sustainable management, improve hazard characterization, help protect the most vulnerable regions, promote community awareness for greater safety and resilience against landslides, and support governmental actions and policies.