Coralligenous biogenic reefs are among the most diverse marine habitats in the Mediterranean Sea. The northern Adriatic mesophotic coralligenous outcrops host very rich and diverse epibenthic assemblages. Several studies quantified the low temporal variability and high spatial heterogeneity of these habitats, while processes driving structuring and differentiation are still poorly understood. To shed light on these processes, temporal and spatial patterns of colonisation were investigated using travertine tiles deployed on three coralligenous outcrops, corresponding to the main typologies of benthic assemblages described in previous studies. Three years after deployment, assemblages colonising travertine tiles resembled the differentiation among sites revealed by the natural assemblages in terms of major ecological groups. Processes structuring and maintaining species diversity have been explored. Pioneer species with high reproduction rate, long distance larval dispersal and fast growth (e.g. the serpulid polychaete Spirobranchus triqueter and the bivalve Anomia ephippium), were the most abundant in the early stages of recruitment on the two outcrops further away from the coast and with lower sedimentation. Their success may vary according to larval availability and environmental conditions (e.g., sedimentation rates). At these sites early-stage lasted 10–12 months, during which even species from natural substrates began colonising tiles by settlement of planktonic propagules (e.g., encrusting calcareous Rhodophyta) and lateral encroachment (e.g., sponges and ascidians). On coastal outcrop, exposed to a higher sedimentation rates, tiles were colonised by fast-growing algal turfs. Resilience of northern Adriatic coralligenous assemblages, and maintenance of their diversity, appeared largely entrusted to asexual reproduction. Exploring the mechanisms that underlie the formation and maintenance of the species diversity is crucial to improve our understanding of ecological processes and to implement appropriate conservation strategies of the Adriatic coralligenous reefs.