The economy of electrified vehicles can be improved by using the motor to recover the energy released during braking. However, the vehicle's regenerative braking system (RBS) and anti-lock braking system (ABS) are not compatible, so the energy dissipated during braking cannot be recovered under emergency braking conditions. This paper employs the method of logic threshold control combined with phase plane theory to analyze the relationship between the slip rate and the braking torque during the ABS braking process and to obtain the composition rule of the braking torque required for ABS braking. Based on this rule, a control strategy to coordinate RBS and ABS when triggering ABS is proposed to improve the efficiency of braking energy recovery. Furthermore, a comparative simulation is conducted to analyze the braking performance of electrified vehicle on roads with different adhesion coefficients by adopting the proposed control strategy and the traditional control strategy. The results show that, compared with the traditional coordinated control strategy, the braking energy recovery efficiency of the proposed coordinated control strategy is improved by 23.08%-38.54%, and can effectively shorten the braking distance and braking time, with better braking performance. Therefore, this paper offers a useful theoretical reference to the design of RBS and ABS coordinated control strategies for electrified vehicles. INDEX TERMS Anti-lock braking system, Coordinated control strategy, Energy recovery, Regenerative braking.