At present, most methodologies proposed to control over double fed induction generators (DFIGs) are based on single machine model, where the interactions from network have been neglected. Considering this, this paper proposes a decentralized coordinated control of DFIG based on the neural interaction measurement observer. An artificial neural network is employed to approximate the nonlinear model of DFIG, and the approximation error due to neural approximation has been considered. A robust stabilization technique is also proposed to override the effect of approximation error. A 2 controller and a ∞ controller are employed to achieve specified engineering purposes, respectively. Then, the controller design is formulated as a mixed 2 / ∞ optimization with constrains of regional pole placement and proportional plus integral (PI) structure, which can be solved easily by using linear matrix inequality (LMI) technology. The results of simulations are presented and discussed, which show the capabilities of DFIG with the proposed control strategy to fault-tolerant control of the maximum power point tracking (MPPT) under slight sensor faults, low voltage ride-through (LVRT), and its contribution to power system transient stability support.