In the last years the continuous efforts on the development of EUV lithography has allowed to push the lithographic performances of the EUV photoresists on the ASML NXE:3100 full field exposure tool at imec. The latest chemically amplified photoresists can reach an ultimate resolution of 16 nm and 24 nm for line-space (L/S) and dense contacts (CH), respectively, but the major issue on EUV photoresists remains to simultaneously meet resolution, sensitivity, line-edge roughness (LER) for LS and local CD uniformity (LCDU) for CH, suggesting that the desired performance characteristics of EUV photoresists may require the development of new EUV materials. Aiming to this, imec has recently started a new project to look into novel materials for EUV lithography to explore alternative approaches that can offer superior characteristics in photoresist imaging: improved LER and line collapse, high sensitivity and high etch resistance. In this paper we report the first results from the exploration of new EUV alternative materials and the latest results from the conventional EUV photoresist evaluation and process optimization at imec towards the ASML NXE:3300 full field exposure tool.