Here we focused on Polish oat landraces developed in the moderate temperature zone attempting to understand their genetic and phenotypic variability in context of the pressure of environmental constrains at the locations where they had evolved. Besides molecular markers and diverse phenotypic traits the Fourier transform infrared (FTIR) spectroscopy, enabling throughput metabolic fingerprinting, was used for the description of the germplasm collection. We used sophisticated multivariable analysis to integrate the data for structure analysis and to establish mutual relationships. We found that the accessions diversity across the eco-geographical variables was manifested differently depending on selected phenotypic, genetic, and metabolic criteria.Grain metabolic fingerprint derived from FTIR spectroscopy revealed the highest degree of germplasm diversity among all of the examined traits, particularly for spectral bands assigned to lipids. The landraces, which were collected in close geographical proximity, showed clear morphological and metabolic resemblances, although they represented quite different genetic backgrounds. All three levels of analysis showed the presence of selection resulting from environmental pressures and more specifically from the temperature at the landrace origin site. This research also proved that coupling of genetic polymorphism with the FTIR fingerprinting markedly extended the description of the oat landraces diversity.