Grain growth, a competitive growth of crystal grains accompanied by curvature-driven boundary migration, is one of the most fundamental phenomena in the context of metallurgy and other scientific disciplines. However, the true picture of grain growth is still controversial, even for the simplest (or 'ideal') case. This problem can be addressed only by large-scale numerical simulation. Here, we analyze ideal grain growth via ultra-large-scale phase-field simulations on a supercomputer for elucidating the corresponding authentic statistical behaviors. The performed simulations are more than ten times larger in time and space than the ones previously considered as the largest; this computational scale gives a strong indication of the achievement of true steady-state growth with statistically sufficient number of grains. Moreover, we provide a comprehensive theoretical description of ideal grain growth behaviors correctly quantified by the present simulations. Our findings provide conclusive knowledge on ideal grain growth, establishing a platform for studying more realistic growth processes.