Tuberculosis (TB) is one of the world’s deadliest infectious disease killers today, and despite China’s increasing efforts to prevent and control TB, the TB epidemic is still very serious. In the context of the COVID-19 pandemic, if reliable forecasts of TB epidemic trends can be made, they can help policymakers with early warning and contribute to the prevention and control of TB. In this study, we collected monthly reports of pulmonary tuberculosis (PTB) in Guiyang, China, from January 1, 2010 to December 31, 2020, and monthly meteorological data for the same period, and used LASSO regression to screen four meteorological factors that had an influence on the monthly reports of PTB in Guiyang, including sunshine hours, relative humidity, average atmospheric pressure, and annual highest temperature, of which relative humidity (6-month lag) and average atmospheric pressure (7-month lag) have a lagging effect with the number of TB reports in Guiyang. Based on these data, we constructed ARIMA, Holt-Winters (additive and multiplicative), ARIMAX (with meteorological factors), LSTM, and multivariable LSTM (with meteorological factors). We found that the addition of meteorological factors significantly improved the performance of the time series prediction model, which, after comprehensive consideration, included the ARIMAX (1,1,1) (0,1,2)12 model with a lag of 7 months at the average atmospheric pressure, outperforms the other models in terms of both fit (
RMSE
=
37.570
,
MAPE
=
10.164
%
,
MAE
=
28.511
) and forecast sensitivity (
RMSE
=
20.724
,
MAPE
=
6.901
%
,
MAE
=
17.306
), so the ARIMAX (1,1,1) (0,1,2)12 model with a lag of 7 months can be used as a predictor tool for predicting the number of monthly reports of PTB in Guiyang, China.