The Indian Ocean is an important part of the global thermohaline circulation system, receiving deep waters sourced from the Southern Ocean and being the location of upwelling and surface-ocean current flow, which returns warm and salty waters to the Atlantic. It is also an ideal location to reconstruct the link between thermohaline circulation and deep-water nutrient contents. No mixing occurs between major deep-water masses along flow paths within the Indian Ocean, so changes in water-mass provenance reflect changes in deep-ocean circulation while nutrient contents reflect addition and dissolution of organic matter. We present neodymium (Nd) and carbon (C) isotope records, proxies of water-mass provenance and nutrient contents, respectively, from an equatorial Indian Ocean core (SK129−CR2) spanning the last 150 kyr. The Nd isotope record shows that an increased proportion of North Atlantic Deep Water (NADW) reached the Indian Ocean during interglacials (marine isotope stages, MIS 1 and 5), and a reduced proportion during glacials (MIS 2, 4, and 6), and also that changes occurred during