Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objectives Cefiderocol is a novel siderophore-conjugated cephalosporin developed for the treatment of multidrug-resistant Gram-negative bacterial (GNB) infections. However, the current gold standard for cefiderocol susceptibility testing, broth microdilution (BMD) using iron-depleted cation-adjusted Mueller–Hinton broth, presents challenges for many microbiology laboratories. In this study, we evaluate the real-world performance of disc diffusion (DD) and a commercial BMD method (ComASP®) to test cefiderocol susceptibility in a series of isolates collected prospectively from severely ill patients in a multicentre study. Methods The susceptibilities of 1472 isolates (632 Enterobacterales, 532 Pseudomonas aeruginosa, 84 Acinetobacter spp. and 224 Stenotrophomonas maltophilia) collected in 60 Spanish hospitals were analysed following the EUCAST 2023 and 2024 criteria. We assessed the performance of DD (cefiderocol 30 μg disc, Liofilchem) and a commercial BMD method (ComASP® Cefiderocol, Liofilchem). Results A total of 1408 and 1450 isolates were susceptible by DD and ComASP® BMD, respectively. Overall, the agreement between both methods was 96.9%. Forty-four isolates were resistant by DD but susceptible by ComASP® BMD, and two were susceptible by DD but resistant by ComASP® BMD (Acinetobacter baumannii isolates). Adoption of the updated 2024 EUCAST DD breakpoints and areas of technical uncertainty (ATUs) led to a decrease in susceptibility among Enterobacterales (95.3% versus 92.6%). Conclusions DD is a straightforward, rapid and accessible method for routine determination of cefiderocol susceptibility in real-world practice. ComASP® BMD shows a high agreement with DD in susceptible isolates and may help to resolve DD interpretability concerns in isolates with susceptibility results within the ATU, but caution is warranted when testing resistant isolates.
Objectives Cefiderocol is a novel siderophore-conjugated cephalosporin developed for the treatment of multidrug-resistant Gram-negative bacterial (GNB) infections. However, the current gold standard for cefiderocol susceptibility testing, broth microdilution (BMD) using iron-depleted cation-adjusted Mueller–Hinton broth, presents challenges for many microbiology laboratories. In this study, we evaluate the real-world performance of disc diffusion (DD) and a commercial BMD method (ComASP®) to test cefiderocol susceptibility in a series of isolates collected prospectively from severely ill patients in a multicentre study. Methods The susceptibilities of 1472 isolates (632 Enterobacterales, 532 Pseudomonas aeruginosa, 84 Acinetobacter spp. and 224 Stenotrophomonas maltophilia) collected in 60 Spanish hospitals were analysed following the EUCAST 2023 and 2024 criteria. We assessed the performance of DD (cefiderocol 30 μg disc, Liofilchem) and a commercial BMD method (ComASP® Cefiderocol, Liofilchem). Results A total of 1408 and 1450 isolates were susceptible by DD and ComASP® BMD, respectively. Overall, the agreement between both methods was 96.9%. Forty-four isolates were resistant by DD but susceptible by ComASP® BMD, and two were susceptible by DD but resistant by ComASP® BMD (Acinetobacter baumannii isolates). Adoption of the updated 2024 EUCAST DD breakpoints and areas of technical uncertainty (ATUs) led to a decrease in susceptibility among Enterobacterales (95.3% versus 92.6%). Conclusions DD is a straightforward, rapid and accessible method for routine determination of cefiderocol susceptibility in real-world practice. ComASP® BMD shows a high agreement with DD in susceptible isolates and may help to resolve DD interpretability concerns in isolates with susceptibility results within the ATU, but caution is warranted when testing resistant isolates.
Pseudomonas aeruginosa, a versatile bacterium, relies on several TonB-dependent transporters (TBDTs) for nutrient acquisition (such as iron-siderophore complexes) and adaptation to various environments. While some TBDTs are well characterized, a significant number remain unexplored despite their potential role in pathogenicity. In this study, we developed fluorescent reporter plasmids to investigate TBDT promoter activity. Initially, we characterized their promoter activity in commonly used laboratory conditions, revealing diverse expression patterns among all TBDTs. Subsequently, we classified the TBDTs into distinct metal-responsive groups based on their stress-responsive behaviour, shedding light on their functional roles. Additionally, we show that these reporter constructs can be used as a powerful tool for siderophore detection. Finally, single cell analysis of TBDT promoter activity during coculture with an enterobactin-producing Klebsiella pneumoniae strain shows homogenous expression of key TBDT in P. aeruginosa. Our findings provide valuable insights into the expression profiles and functional diversity of P. aeruginosa TBDTs in complex conditions, reaching from commonly used lab media to complex co-culturing conditions.
Background Cefiderocol is a siderophore-conjugated cephalosporin increasingly used in the management of Achromobacter infections. Testing for cefiderocol susceptibility is challenging with distinct recommendations depending on the pathogens. ObjectivesWe evaluated the performance of commercial tests for testing cefiderocol susceptibility in the Achromobacter genus and reviewed the literature.Methods Diffusion (disks, MIC gradient test strips [MTS], Liofilchem) and broth microdilution (BMD) methods (ComASP™, Liofilchem; UMIC®, Bruker) were compared with the BMD reference method according to the EUCAST guidelines on 143 Achromobacter strains from 14 species with MIC 50/90 of ≤ 0.015/0.5 mg/L. A literature search was conducted regardless of method or species. ResultsNone of the methods tested fulfilled an acceptable essential agreement (EA). MTS displayed the lowest EA (30.8%) after UMIC® (49%) and ComASP™ (76.9%). All methods achieved an acceptable bias, with MICs either underestimated using MTS (-1.3%) and ComASP™ (-14.2%) or overestimated with UMIC® (+ 9.1%). Inhibition zone diameters ranged from 6 to 38 mm (IZD 50/90 =33/30 mm). UMIC® and ComASP™ failed to categorize one or the two cefiderocol-resistant strains of this study as resistant unlike the diffusion-based methods. The literature review highlighted distinct performance of the available methods according to pathogens and testing conditions. ConclusionsThe use of MTS is discouraged for Achromobacter spp. Disk diffusion can be used to screen for susceptible strains by setting a threshold diameter of 30 mm. UMIC® and ComASP™ should not be used as the sole method but have to be systematically associated with disk diffusion to detect the yet rarely described cefiderocolresistant Achromobacter sp. strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.