In patients undergoing percutaneous coronary intervention, the second-generation drug-eluting stents (DES) are considered the gold standard of care for revascularization. By reducing neointimal hyperplasia, drug-eluting coronary stents decrease the need for repeat revascularizations compared with conventional coronary stents without an antiproliferative drug coating. It is important to note that early-generation DESs were associated with an increased risk of very late stent thrombosis, most likely due to delayed endothelialization or a delayed hypersensitivity reaction to the polymer. Studies have shown a lower risk of very late stent thrombosis with developing second-generation DESs with biocompatible and biodegradable polymers or without polymers altogether. In addition, research has indicated that thinner struts are associated with a reduced risk of intrastent restenosis and angiographic and clinical results. A DES with ultrathin struts (strut thickness of 70 µm) is more flexible, facilitates better tracking, and is more crossable than a conventional second-generation DES. The question is whether ultrathin eluting drug stents suit all kinds of lesions. Several authors have reported that improved coverage with less thrombus protrusion reduced the risk of distal embolization in patients with ST-elevation myocardial infarction (STEMI). Others have described that an ultrathin stent might recoil due to low radial strength. This could lead to residual stenosis and repeated revascularization of the artery. In CTO patients, the ultrathin stent failed to prove non-inferiority regarding in-segment late lumen loss and showed statistically higher rates of restenosis. Ultrathin-strut DESs with biodegradable polymers have limitations when treating calcified (or ostial) lesions and CTOs. However, they also possess certain advantages regarding deliverability (tight stenosis, tortuous lesions, high angulation, etc.), ease of use in bifurcation lesions, better endothelialization and vascular healing, and reducing stent thrombosis risk. In light of this, ultrathin-strut stents present a promising alternative to existing DESs of the second and third generation. The aims of the study are to compare ultrathin eluting stents with second- and third-generation conventional stents regarding procedural performance and outcomes based on different lesion types and specific populations.