Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Brown adipose tissue (BAT) plays a key role in energy homeostasis and thermogenesis in animals, conferring protection against diet-induced obesity and hypothermia through the action of uncoupling protein 1 (UCP1). Recent metabolic imaging studies using positron emission tomography computerized tomography (PET-CT) scanning have serendipitously revealed significant depots of BAT in the cervical-supraclavicular regions, demonstrating persistence of BAT beyond infancy. Subsequent cold-stimulated PET-CT studies and direct histological examination of adipose tissues have demonstrated that BAT is highly prevalent in adult humans. BAT activity correlates positively with increment of energy expenditure during cold exposure and negatively with age, body mass index, and fasting glycemia, suggesting regulatory links between BAT, cold-induced thermogenesis, and energy metabolism. Human BAT tissue biopsies express UCP1 and harbor inducible precursors that differentiate into UCP1-expressing adipocytes in vitro. These recent discoveries represent a metabolic renaissance for human adipose biology, overturning previous belief that BAT had no relevance in adult humans. They also have implications for the understanding of the pathogenesis and treatment of obesity and its metabolic sequelae.
Brown adipose tissue (BAT) plays a key role in energy homeostasis and thermogenesis in animals, conferring protection against diet-induced obesity and hypothermia through the action of uncoupling protein 1 (UCP1). Recent metabolic imaging studies using positron emission tomography computerized tomography (PET-CT) scanning have serendipitously revealed significant depots of BAT in the cervical-supraclavicular regions, demonstrating persistence of BAT beyond infancy. Subsequent cold-stimulated PET-CT studies and direct histological examination of adipose tissues have demonstrated that BAT is highly prevalent in adult humans. BAT activity correlates positively with increment of energy expenditure during cold exposure and negatively with age, body mass index, and fasting glycemia, suggesting regulatory links between BAT, cold-induced thermogenesis, and energy metabolism. Human BAT tissue biopsies express UCP1 and harbor inducible precursors that differentiate into UCP1-expressing adipocytes in vitro. These recent discoveries represent a metabolic renaissance for human adipose biology, overturning previous belief that BAT had no relevance in adult humans. They also have implications for the understanding of the pathogenesis and treatment of obesity and its metabolic sequelae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.