The retention force of cemented crowns on implant abutments with various luting materials was evaluated. Cobalt–chromium crowns were cemented onto tapered titanium abutments (Camlog) with eugenol-free temporary cement (RelyX TempBond NE), composite-based temporary cement (Bifix Temp), zinc phosphate cement (Harvard Cement), glass-ionomer cements (Meron, Fuji I), and resin-modified glass-ionomer cements (Fuji II, Fuji Plus, Ketac Cem Plus). Specimen aging via hydrostress was performed in artificial saliva at 37 °C for 14 days (S1), followed by hydrothermal stress with thermocycling (S2). The crowns were removed, and the force was recorded (T1). Subsequently, the crowns were recemented, aged, and removed, and the force was recorded (T2, T3). The retention forces differences were statistically significant according to the storage conditions at T1 (p = 0.002) and T3 (p = 0.0002). After aging (S1), Ketac Cem Plus had the highest retention force median value difference (T3 versus T1) (−773 N), whereas RelyX TempBond NE had the lowest (−146 N). After aging (S2), Meron had the highest retention force median value difference (−783 N), whereas RelyX TempBond NE had the lowest (−168 N). Recementation decreased the retention force of the implant-supported cobalt–chromium crowns cemented and recemented with the same luting materials. Luting materials (at T1) and aging conditions significantly impacted the retention force.