The objective of this research was to determine whether plasma concentration of FSH was genetically correlated with ovulation rate and thus was a useful trait for indirect selection. Blood samples were collected from 619 animals from five lines of pigs. Line I was selected for increased index of ovulation rate and embryonal survival, and Line C was its randomly selected control. Pigs sampled from Lines I and C were from generations 12 and 13. Pigs from three additional lines that were derived from eighth-generation pigs of Lines I and C also were used. These lines were Line C2, a randomly selected control derived from Line C, Line COL, derived from Line C, and Line IOL, derived from Line I; each of these lines was selected an additional five generations for increased ovulation rate and increased litter size. A single blood sample was collected from each pig between 46 to 63 (d 58), 86 to 98 (d 90), 110 to 133 (d 124), and 147 to 153 (d 150) d of age. The heritability of ovulation rate was .28 and heritabilities of plasma concentration of FSH at d 58, 90, 124, and 150 were .41, .25, .12, and 0, respectively. Genetic correlations between ovulation rate and d-58, d-90, and d-124 plasma concentration of FSH were .31, .23, and 0, respectively. Line I gilts had greater estimated breeding values for plasma concentration of FSH at d 58 and 90 than Line C gilts (P < .01). Line COL gilts had greater estimated breeding values for plasma concentration of FSH at d 58 than Line C2 gilts (P < .01). Line I boars had greater estimated breeding values for plasma concentration of FSH at d 90 than Line C boars (P < .05). Even though genetic correlations were low, selection for increased plasma concentration of FSH was estimated to be 93% as effective in changing ovulation rate as direct selection because selection for FSH can be practiced in both sexes. Thus, selection for increased plasma concentration of FSH seems to be a practical method for increasing ovulation rate in pig breeding programs without using laparoscopy.