Chronic wasting disease (CWD) is an emerging and fatal contagious prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. CWD prions are widely distributed throughout the bodies of CWD-infected animals and are found in the nervous system, lymphoid tissues, muscle, blood, urine, feces, and antler velvet. The mechanism of CWD transmission in natural settings is unknown. Potential mechanisms of transmission include horizontal, maternal, or environmental routes. Due to the presence of prions in the blood of CWD-infected animals, the potential exists for invertebrates that feed on mammalian blood to contribute to the transmission of CWD. The geographic range of the Rocky Mountain Wood tick, Dermancentor andersoni, overlaps with CWD throughout the northwest United States and southwest Canada, raising the possibility that D. andersoni parasitization of cervids may be involved in CWD transmission. We investigated this possibility by examining the blood meal of D. andersoni that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the hamsters inoculated with a D. andersoni blood meal that had been ingested from prion-infected hamsters developed clinical signs of prion disease or had evidence for a subclinical prion infection. Overall, the data do not demonstrate a role for D. andersoni in the transmission of prion disease.
IMPORTANCE Chronic wasting disease (CWD) is an emerging prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. The mechanism of CWD transmission in unknown. Due to the presence of prions in the blood of CWD-infected animals, it is possible for invertebrates that feed on cervid blood to contribute to the transmission of CWD. We examined the blood meal of D. andersoni, a tick with a similar geographic range as cervids, that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the D. andersoni blood meals that had been ingested from prion-infected hamsters yielded evidence of prion infection. Overall, the data do not support a role of D. andersoni in the transmission of prion disease.