Resistance training (RT) progress is determined by an individual’s muscle strength, measured by one-repetition maximum (1RM). However, this evaluation is time-consuming and has some safety concerns. Bioelectrical impedance analysis (BIA) is a valid and easy-to-use method to assess skeletal muscle mass (SMM). Although BIA measurements are often correlated with muscle strength, few studies of 1RM for RT and BIA measurements are available. This observational study examined the relationship between 1RM and BIA measurements and developed BIA-based prediction models for 1RM. Thirty-five healthy young Japanese adults were included. SMM and the skeletal muscle mass index (SMI) were measured using the BIA device. In addition, dominant-leg 1RM was measured using a unilateral leg-press (LP) machine. The correlations between BIA measurements and 1RM were calculated, and simple regression analyses were performed to predict 1RM from the BIA variables. The results showed significant correlations between 1RM and dominant-leg SMM (R = 0.845, P = 0.0001) and SMI (R = 0.910, P = 0.0001). The prediction models for 1RM for LP derived from SMM of the dominant leg and SMI were Y = 8.21x + 8.77 (P = 0.0001), R2 = 0.73, and Y = 15.53x − 36.33 (P = 0.0001), R2 = 0.83, respectively. Our results indicated that BIA-based SMI might be used to predict 1RM for LP accurately.