2018
DOI: 10.1016/j.promfg.2018.01.016
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of Different Classification Algorithms for Fault Detection and Fault Isolation in Complex Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
25
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 41 publications
(27 citation statements)
references
References 9 publications
0
25
0
2
Order By: Relevance
“…For example, Jung et al . [24] compared the performance of three classifiers SVM, weighted k‐NN, and DT, for fault detection and fault isolation in complex systems. According to Nowaczy et al .…”
Section: Approachmentioning
confidence: 99%
See 1 more Smart Citation
“…For example, Jung et al . [24] compared the performance of three classifiers SVM, weighted k‐NN, and DT, for fault detection and fault isolation in complex systems. According to Nowaczy et al .…”
Section: Approachmentioning
confidence: 99%
“…Jung et al . [24] compared the performance of three classifiers: SVM, k‐NN, and DT – using data from the optimised and non‐optimised sensor set solutions for fault detection in complex systems on a fuel system. The fuel delivery system comprises standard components such as a filter, pump, valve, nozzle, pipes, and two tanks, and their model detects any component‐related fault in the system.…”
Section: Introductionmentioning
confidence: 99%
“…The samples that are closest to the decision boundary, thus defining the hyper-planes, are called support vectors. In [62] the authors compare several classifiers for fault detection, including distance-weighted K-nearest neighbors and support vector machines among others.…”
Section: Classificationmentioning
confidence: 99%
“…Para o diagnóstico de falhasé possível utilizar classificadores como Redes Neurais Artificiais (ANN), K-vizinhos Próximos (KNN),Árvore de Decisão (DT), Máquina de Vetores Suporte (SVM), ou outros, treinados a partir de dados. Jung et al (2018) comparou o desempenho dos classificadores SVM, KNN ponderado e DT, testados em um protótipo construído em laboratório para representar um sistema de combustível de veículos aéreos não tripulados (UAV). Tambémé possível utilizar inferência Bayesiana para diagnosticar falhas, como em Ge e Song (2009) e Md.…”
Section: Introductionunclassified