Two to three million newborn infants worldwide need extensive cardiopulmonary resuscitation (CPR), and approximately one million of these infants die annually worldwide. Therefore, resuscitation techniques require further refinement to provide better outcomes. To investigate the effectiveness of various interventions and to understand the pathophysiology and pharmacology of neonatal CPR, it is important to have animal models that reliably reproduce features observed in neonates who require resuscitation. Herein, we describe an experimental animal model in newborn piglets that simulates neonatal asphyxia and enables us to examine resuscitation interventions, reoxygenation, and recovery processes. The newborn piglet has several advantages including similar development to a human fetus at 36-38 week's gestation, and comparable body systems and body size, allowing for surgical instrumentation, monitoring, and collection of biological samples. Furthermore, using this model of neonatal asphyxia, we are also able to describe an increasingly important clinical situation in the laboratory setting-pulseless electrical activity (PEA). Since the integration of electrocardiogram into the neonatal resuscitation guidelines, there has been an increased awareness of PEA in newborn infants. The animal model we describe can therefore serve as a valuable tool to bridge the knowledge gap and improve the outcome of asphyxiated newborns in the delivery room.