Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus type 2 (CPV-2). Therefore, coinfection and superinfection with multiple parvovirus strains may occur, resulting in high heterogeneity and recombination. Considering the importance of cats as a potential source of genetic diversity for parvoviruses, we investigated the frequency of parvovirus infection in cats using their blood and fecal samples and performed molecular characterization of parvovirus strains circulating in cat populations. Accordingly, the fecal and blood samples of 60 cats with gastroenteritis symptoms were collected from Turkey’s Burdur, Isparta, and Izmit provinces. Of these 15 fecal samples tested as parvovirus-positive by PCR, 14 were confirmed to have been infected with true FPV strains by sequencing analysis. Through the phylogeny analysis, those were located in the FPV cluster, closely related to CPV-2, and one was discriminated in the CPV-2b cluster. Additionally, sequence analysis of the VP2 gene of CPV and FPV revealed that the FPV strains detected in Turkey and the vaccine strains were highly related to each other, with a nucleotide identity of 97.7- 100%. Furthermore, 13 variable positions were detected in VP2 of the field and reference FPV strains. Three synonymous mutations were determined in the VP2 gene. Some amino acid mutations in the VP2 protein-affected sites were considered responsible for the virus’s biological and antigenic properties. The partial sequence analysis of the VP2 gene revealed that four FPV strains detected in Turkey have a single nucleotide change from T to G at the amino acid position 384 between the nucleotides 3939-3941, which was reported for the first time. Therefore, these four isolates formed a different branch in the phylogenetic tree. The results suggest that both FPV and CPV-2b strains are circulating in domestic cats in Turkey and cats should be considered as potential sources of new parvovirus variants for cats, dogs and other animals.