A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations Yefimov, S; Groma, [No Value]; van der Giessen, Erik; Groma, I. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
AbstractA two-dimensional nonlocal version of continuum crystal plasticity theory is proposed, which is based on a statistical-mechanics description of the collective behavior of dislocations coupled to standard small-strain crystal continuum kinematics for single slip. It involves a set of transport equations for the total dislocation density ÿeld and for the net-Burgers vector density ÿeld, which include a slip system back stress associated to the gradient of the net-Burgers vector density. The theory is applied to the problem of shearing of a two-dimensional composite material with elastic reinforcements in a crystalline matrix. The results are compared to those of discrete dislocation simulations of the same problem. The continuum theory is shown to be able to pick up the distinct dependence on the size of the reinforcing particles for one of the morphologies being studied. Also, its predictions are consistent with the discrete dislocation results during unloading, showing a pronounced Bauschinger e ect. None of these features are captured by standard local plasticity theories. ?