We report the results from the application of our optical potential and relativistic optical potential (ROP) methods to electron-magnesium scattering. The energy range of this study was 0-5000 eV, with the results for the integral elastic cross sections, summed discrete electronic-state excitation integral cross sections, momentum transfer cross sections, and total ionisation cross sections being reported. Where possible, we compare the present results to the available experimental data and to the earlier results from close coupling and R-matrix type computations. Typically, a quite fair level of accord is found between our ROP calculations and the earlier theoretical and experimental cross sections. Additionally, from the assembled database, we provide for the modeling community some recommended cross section sets for use in their simulations, in which magnesium is a constituent. Electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.1 to 1000 Td using a multiterm solution of Boltzmann's equation. Substantial differences in the transport coefficients between the ROP calculations and the recommended cross sections are observed over the range of fields considered, clearly illustrating the importance of the veracity of the database in the simulations.