Shock-wave loading of a steel cylindrical ampoule that contained an aluminum-copper oxide(Al/CuO) thermite mixture is simulated in three-dimensional space using the SPH method.The chemical reaction starts after the performance of the criterion on temperature or pressure.Thechemical reaction equations are integrated using the first-order Euler method.The elastic-plastic flow is calculated using the variational formulation.The numerical study of solid-phase chemical transformations in the Al/CuO thermite mixture under shock-wave loading shows that the initiation of reactions in the shock wave,further development,and completion depends significantly on the amplitude and duration of the shock wave.Sub-critical pressure pulse can lead to an incomplete reaction or incompletely compacted final product.