This work presents insight to the laminar-turbulent transition in flow around cylinder through a numerical simulation, both in isothermal and heated case. The flow is modelled directly as a solution to the Navier-Stokes and Navier-Stokes-Fourier system. Reynolds numbers are considered in range 100-20000, ratio of cylinder-wall and upstream temperature is up to 1.5. Curves representing evolution of separation positions in time provide novel insight to vortex formation. Various regimes are recognized and some of them can be assigned to phenomenons described formerly in experiment.