We construct vertical profiles of the acoustic attenuation and back‐scattering properties of a river column from measured particle concentration and size distribution profiles. The particle size and concentration data were collected in situ in the Cowlitz River in Washington, U.S., using a laser diffraction‐instrument LISST‐SL. The particle size distribution was bimodal, comprising a vertically well‐mixed washload, and a suspended load that was similar to Rouse profiles. We then explore how well the results of converting these synthetic profiles to recover an acoustic equivalent sediment concentration and acoustic equivalent size compare with laser data in this bimodal environment. The acoustic scattering and attenuation properties are computed for four distinct frequencies: 0.5, 1, 3, and 5 MHz. It is seen that at the lowest frequency, 500 KHz, the acoustic attenuation throughout the water column is nearly constant and determined primarily by particles of size smaller than ∼30 microns, i.e., the washload. At the next higher frequency, 1 MHz, the suspended load also contributed to attenuation, but even so, attenuation remained nearly constant over the vertical profile. Thus, at the two lower frequencies, attenuation was decoupled from scattering, making the inverse problem explicit for inversion. In contrast, at the two highest frequencies, scattering of sound by the suspended mode became the dominant contributor to attenuation, and attenuation varied by an order of magnitude over river depth. As for backscatter, the computed acoustic backscatter strength was determined by a combination of the washload and suspended sediment mode at all four frequencies. A fairly narrow monotonic relationship was found between total sediment concentration and locally computed backscatter, effectively providing a calibration between local backscatter signal strength and suspended sediment concentration. Such a relationship existed throughout the water column, for every frequency. The sediment concentration derived from backscatter at a pair of frequencies was within ∼50% of the value measured by laser diffraction; however, the acoustic equivalent diameter exceeded the laser volume mean diameter by up to an order of magnitude. The robustness of these results for application to other flow regimes or rivers remains to be investigated.