The numerically simulated method of using electromagnetic field from an alternating current is a patented method to create in liquid metal, under the conditions of resonance, acoustic waves of sufficient strength to cause cavitation and implosion of gas bubbles, leading to beneficial degassing and grain refinement. The modelling stages of electromagnetics are described below along with acoustics in liquids, bubble dynamics, and their interactions. Sample results are presented for a cylindrical container with liquid aluminium surrounded by an induction coil. The possibility of establishing acoustic resonance and sustaining the bubble oscillation at a useful level is demonstrated. Limitations of the time-dependent approach to this multi-physics modelling problem are also discussed.