2017
DOI: 10.5897/ajar2017.12528
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of GGE biplot and AMMI analysis of multi-environment trial (MET) data to assess adaptability and stability of rice genotypes

Abstract: Genotype × Environment (G×E) interaction and stability performance were investigated on paddy yield of eighteen rice genotypes and twelve locations using two well renowned statistical models; genotype main effect and G×E Biplot analysis (GGE) and additive main effects and multiplicative interaction (AMMI) analysis. The aim of this study was to elucidate the performance of some advance rice lines/genotypes at multiple locations in multi environment trials (METs) using GGE biplot and AMMI analyses. The results o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 11 publications
0
4
0
1
Order By: Relevance
“…The GGE biplot analysis showed high variability as compared to that reported by Ponnuswamy et al (2018) and Haider et al (2017). Additionally, both components IPCA1 and IPCA2 showed high significance.…”
Section: Discussionmentioning
confidence: 67%
See 1 more Smart Citation
“…The GGE biplot analysis showed high variability as compared to that reported by Ponnuswamy et al (2018) and Haider et al (2017). Additionally, both components IPCA1 and IPCA2 showed high significance.…”
Section: Discussionmentioning
confidence: 67%
“…Recent studies describe the predicting efficiency of AMMI and GGE biplots by using the genotype average yield, the relationship between genotypes and the evaluation of the environments (Acevedo et al, 2021;Acevedo et al, 2019;Rebolledo et al, 2018;Haider et al, 2017;Akter et al, 2015). Nevertheless, few publications are available in Venezuela and Latin America on rice hybrid GEI research.…”
Section: Introductionmentioning
confidence: 99%
“…To identify stable genotypes and investigate the GE interaction among crops, numerous statistical methods have been proposed since the 19 th century, ranging from univariate methods such as the regression method [ 18 , 19 ] and stability method [ 20 ] to multivariate methods like factor analytic models, AMMI and GGE. For evaluating multi-location trials, biplot approaches such as GGE, AMMI and WAASB are widely used [ 21 , 22 ] as they provide information on stable genotypes and types of GE interactions and also assist in the identification of mega-environments.…”
Section: Methodsmentioning
confidence: 99%
“…La relación que presentaron los años dependió del coseno de ángulo de los vectores el cual se aproxima al coeficiente de correlación, donde el ángulo agudo indicó una relación positiva, sin embargo el ángulo obtuso reveló una asociación negativa y los ángulos rectos significó que no existió ninguna (Yan, 2002;Haider et al, 2017), pudiéndose formar dos grupos de megaambientes: el primer grupo estuvo conformado por los años 2015, 2016 y 2017, asimismo el segundo grupo se conformó por el año 2014. Este último presentó un ángulo de recto a obtuso con respecto a los años del primer grupo.…”
Section: Mega-ambientesunclassified