Spin-momentum locking in a semiconductor device with strong spin-orbit coupling (SOC) is thought to be an important prerequisite for the formation of Majorana bound states 1-3 . Such a helical state is predicted in one-dimensional (1D) nanowires subject to strong Rashba SOC and spin-mixing 4 -its hallmark being a characteristic re-entrant behaviour in the conductance. Here, we report direct experimental observations of the re-entrant conductance feature, which reveals the formation of a helical liquid, in the lowest 1D subband of an InAs nanowire. Surprisingly, the feature is very prominent also in the absence of magnetic fields. This behaviour suggests that exchange interactions have a substantial impact on transport in our device. We attribute the opening of the pseudogap to spin-flipping two-particle backscattering 5-7 . The all-electric origin of the ideal helical transport could have important implications for topological quantum computing.A 1D conductor with strong SOC is predicted 1,2,8 to represent a viable host for Majorana bound states. These zero-energy states feature characteristic non-Abelian exchange statistics 8 and can be created by mimicking spinless p-wave Cooper pairing using a semiconductor nanowire with a helical state and inducing s-wave superconductivity. InAs and InSb nanowires are promising host materials to explore the existence and nature of Majorana bound states 9,10 . To this end, it is essential to both establish transport in 1D subbands and induce a helical state in the nanowire. The usual mechanism that is considered to open a helical gap involves an external Zeeman field oriented perpendicular to the uniaxial spinorbit field 4 . The magnitude of the spin-orbit energy relative to the Zeeman energy is partly responsible for the size of the topological energy gap that will protect the zero-energy Majorana modes 11 . However, Oreg et al. 2,12 and Stoudenmire et al. 13 have pointed out that such an energy gap can also result from strong electronic correlations. Several mechanisms have been proposed along these lines: for example, spin-flipping two-particle backscattering 7 and hyperfine interaction between nuclear spins and a Luttinger liquid 14 , both of which can open a gap. The latter mechanism has been invoked to explain a conductance reduction by a factor of two at low temperatures in a GaAs quantum wire 15 , but no re-entrant behaviour is predicted within this framework.Other than Quay et al. 3 , we report on a re-entrant conductance feature in the lowest subbands of InAs nanowire quantum point contacts (QPCs), which offer the desired strong SOC (see Supplementary Section 1). Moreover, our proposed spin-mixing mechanism does not necessarily rely on external time-reversal symmetry-breaking terms: while the effect is pronounced in the presence of an external magnetic field, it persists also in its absence. Guided by the observation 16 of the Landé g factor enhancement for the lowest subband 17 and by signatures of the 0.7 anomaly 18 , we identify the important role of exchange int...