Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
IntroductionThis study analyzed the impact of various overload conditions on sprint performance compared to free sprinting, aiming to identify the loading scenarios that most closely replicate the mechanics of unresisted sprints across the full acceleration spectrum. While velocity-based training methods have gained popularity, their applicability is limited to the plateau phase of sprinting.MethodsTo address this limitation, we employed cluster analysis to identify scenarios that best replicate the mechanical characteristics of free sprinting across various overload conditions. Sixteen experienced male sprinters performed sprints under six conditions: unresisted, overspeed (OS) and four overloaded conditions inducing a velocity loss (VL) of 10%, 25%, 50% and 65% using a resistance training device with intelligent drag technology. Ground reaction forces and spatiotemporal parameters were recorded for all steps using a 52-meter force plate system for all sprint conditions.ResultsCluster analysis revealed four distinct groups aligning with established sprint phases: initial contact, early-acceleration, mid-acceleration, and late-acceleration. Results showed that heavier loads prolonged the mechanical conditions typical of early-acceleration and mid-acceleration phases, potentially enhancing training stimuli for these crucial sprint components of sprint performance. Specifically, VL50 and VL65 loads extended the early-acceleration phase mechanics to steps 7–8, compared to steps 2–4 for lighter loads. Conversely, lighter loads more effectively replicated late-acceleration mechanics, but only after covering substantial distances, typically from the 11- to 29-meter mark onwards.DiscussionThese findings suggest that tailoring overload conditions to specific sprint phases can optimize sprint-specific training and provide coaches with precise strategies for load prescription. These insights offer a more nuanced approach to resistance-based sprint training by accounting for every step across all acceleration phases, rather than focusing solely on the plateau phase, which accounts for only 20–30% of the steps collected during initial contact to peak velocity depending on the analyzed overload condition.
IntroductionThis study analyzed the impact of various overload conditions on sprint performance compared to free sprinting, aiming to identify the loading scenarios that most closely replicate the mechanics of unresisted sprints across the full acceleration spectrum. While velocity-based training methods have gained popularity, their applicability is limited to the plateau phase of sprinting.MethodsTo address this limitation, we employed cluster analysis to identify scenarios that best replicate the mechanical characteristics of free sprinting across various overload conditions. Sixteen experienced male sprinters performed sprints under six conditions: unresisted, overspeed (OS) and four overloaded conditions inducing a velocity loss (VL) of 10%, 25%, 50% and 65% using a resistance training device with intelligent drag technology. Ground reaction forces and spatiotemporal parameters were recorded for all steps using a 52-meter force plate system for all sprint conditions.ResultsCluster analysis revealed four distinct groups aligning with established sprint phases: initial contact, early-acceleration, mid-acceleration, and late-acceleration. Results showed that heavier loads prolonged the mechanical conditions typical of early-acceleration and mid-acceleration phases, potentially enhancing training stimuli for these crucial sprint components of sprint performance. Specifically, VL50 and VL65 loads extended the early-acceleration phase mechanics to steps 7–8, compared to steps 2–4 for lighter loads. Conversely, lighter loads more effectively replicated late-acceleration mechanics, but only after covering substantial distances, typically from the 11- to 29-meter mark onwards.DiscussionThese findings suggest that tailoring overload conditions to specific sprint phases can optimize sprint-specific training and provide coaches with precise strategies for load prescription. These insights offer a more nuanced approach to resistance-based sprint training by accounting for every step across all acceleration phases, rather than focusing solely on the plateau phase, which accounts for only 20–30% of the steps collected during initial contact to peak velocity depending on the analyzed overload condition.
Background: Evaluations of the usability of hydraulic resistance for resisted sprint-training purposes remains rare. Thus, this study compared step-by-step changes in spatiotemporal characteristics during the first 10 m of sprints with varying hydraulic resistance loads. Methods: Fourteen male athletes performed 20 m sprints under minimal (10 N, considered as normal sprint), moderate (100 N), and heavy (150 N) hydraulic resistance loads. Split times at 10 m, contact time (CT), step length (SL), flight time, and step speed (SS) from the first to the sixth step were measured. A two-way repeated measures ANOVA (load × step) and a one-way ANOVA (load) with post hoc comparisons were used to assess the effects on spatiotemporal characteristics and split times, respectively. Results: Under higher loads, the 10 m times were significantly longer (η2 = 0.79). The CT, SL, and SS varied significantly from step to step within all loads (η2 = 0.45, 0.41, and 0.54, respectively). The CT, SL, and SS of the first, fourth, fifth, and sixth steps of normal sprint differed significantly from most steps under moderate and heavy load (Cohen’s d = −3.09 to 5.39). In contrast, the smallest differences were observed between the second and third step of normal sprint and second to sixth steps under heavy load (Cohen’s d = −0.67 to 1.32, and −0.71 to 1.38, respectively). Conclusions: At the same load settings, a hydraulic resistance device induces changes in step characteristics comparable with those of other motorized devices and is therefore a viable option for resisted sprint training. If the goal of the training is to replicate the steps of the initial sprint acceleration phase, ~150 N of hydraulic resistance would be optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.