Purpose. Because of the poor prognosis for high-grade glioma (HGG) patients, it is important to increase the dose of the tumor to improve the efficacy while minimizing the dose of organs at risk (OARs). Thus, we evaluated the potential dosimetric gains of helical tomotherapy (HT) versus intensity-modulated radiotherapy (IMRT) or volume-modulated arc therapy (VMAT) for high-grade glioma (HGG). Methods. A total of 42 HGG patients were retrospectively selected who had undergone helical tomotherapy; then, IMRT and VMAT plans were generated and optimized for comparison after contouring crucial neuronal structures for neurogenesis and neurocognitive function. IMRT and VMAT were optimized with the Eclipse treatment planning system (TPS) (Version 11.0.31) and HT using TomoTherapy Hi-Art Software (Version 2.0.7) (Accuray, Madison, WI, USA). All three techniques were optimized for simultaneously delivering 60âGy to planning target volume (PTV) 1 and 50-54âGy to PTV2. We also analyzed the homogeneity index (HI) and conformity index (CI) of PTVs and organ at risk (OAR) sparing. Results. There was no significant difference in the PTV coverage among IMRT, VMAT, or HT. As for the HI, HT plans (PTV1 HI: 0.09±0.03, PTV2 HI: 0.17±0.05) had the best homogeneity when compared to IMRT plans (PTV1 HI: 0.10±0.04, PTV2 HI: 0.18±0.04) and VMAT plans (PTV1 HI: 0.11±0.03, PTV2 HI: 0.20±0.03). The CI value of HT (PTV1 CI: 0.98±0.03, PTV2: 0.98±0.05) was closest to the optimal value. Except for the IMRT and VMAT groups, there were statistically significant differences between the other two groups of the CI values in both PTV1 and PTV2. The other comparison values were statistically significant except for the optic nerve, and VMAT had the best sparing of the optic chiasm. The mean and max doses of OARs declined significantly in HT. Conclusions. For high-grade glioma patients, HT had superior outcomes in terms of PTV coverage and OAR sparing as compared with IMRT/VMAT.