This research is a form of development of object detection capabilities on wheeled soccer robots using an omnidirectional camera with the You Only Look Once (YOLO) method where the results show that the robot can detect more than one object, namely the ball and the goal on the green field. This study uses the KRSBI-Wheeled UAD robot using an omnidirectional camera as a tool to carry out the detection process and then uses OpenCV 4.0, Deep Learning, and a laptop as a place to create a detection model, as well as balls and goals as objects to be detected. The results obtained from this study are that the two types of YOLO models tested, namely YOLOv3 and YOLOv3-Tiny can detect ball and goal objects in two different types of frame sizes, namely 320x320 and 416x416 which can be seen from the performance of the YOLOv3 model which has an mAP value of 76%. on the 320x320 frame and an mAP value of 87.5% in the 416x416 frame then the YOLOv3-Tiny model has an mAP value of 68.1% in the 320x320 frame and an mAP value of 75.5% in the 416x416 frame where the YOLOv3 model can detect both object class is much more stable compared to YOLOv3-Tiny.
Penelitian ini merupakan bentuk pengembangan dari kemampuan deteksi objek pada robot sepak bola beroda dengan menggunakan kamera omnidirectional dengan metode You Only Look Once (YOLO) dimana hasil penelitian menunjukkan bahwa robot dapat mendeteksi lebih dari satu objek yaitu bola dan gawang di atas lapangan hijau. Penelitian ini menggunakan robot KRSBI-Beroda UAD dengan memakai kamera omnidirectional sebagai alat untuk melakukan proses pendeteksian lalu menggunakan OpenCV 4.0, Deep Learning, dan laptop sebagai tempat membuat model pendeteksian, serta bola dan gawang sebagai objek yang akan dideteksi. Hasil yang didapatkan dari penelitian ini yaitu kedua jenis model YOLO yang diuji yaitu YOLOv3 dan YOLOv3-Tiny dapat mendeteksi objek bola dan gawang pada dua jenis ukuran frame yang berbeda yaitu 320x320 dan 416x416 yang dapat dilihat dari performa pada model YOLOv3 memiliki nilai mAP sebesar 76% pada frame 320x320 dan serta nilai mAP sebesar 87,5% pada frame 416x416 lalu pada model YOLOv3-Tiny memiliki nilai mAP sebesar 68,1% pada frame 320x320 serta nilai mAP sebesar 75,5% pada frame 416x416 yang dimana model YOLOv3 dapat mendeteksi kedua kelas objek jauh lebih stabil dibandingkan dengan model YOLOv3-Tiny.