With the increasing acceleration of three-dimensional (3D) printing (for example, powder bed fusion (PBF)) of metal alloys as an additive manufacturing process, a comprehensive characterization of 3D-printed materials and structures is inevitable. The purpose of this work was to test highly densified materials produced from gas-atomized pre-alloyed metallic powders, namely 316L, Ti6Al4V, AlSi10Mg, CuNi2SiCr, CoCr28Mo6, and Inconel718, under impact conditions. This was done to demonstrate the best possible performance of such materials. Optimized spark plasma sintering (SPS) parameters (pressure, temperature, heating rate, and holding time) are applied as a novel technique of powder metallurgy. The densification level, impact site (imprint) diameter and volume, and Vickers hardness were studied. The comparison of 316L stainless steel (1) sintered by the SPS process, (2) manufactured by PBF process, and (3) coated by the physical vapor deposition (PVD) process (thin layer of TiAlN) was successfully achieved.