Purpose
In this study, kinetic parameters of the cellular proliferation tracer 18F-3′-deoxy-3′-fluoro-L-thymidine (FLT) and the amino acid probe 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (FDOPA) were measured before and early after the start of therapy, and were used to predict the overall survival (OS) of patients with recurrent malignant glioma using multiple linear regression (MLR) analysis.
Methods
High-grade recurrent brain tumors were investigated in 21 patients (11 male and 10 female; ages 26–76 years). For both probes, each patient had 3 dynamic PET studies: at baseline and after 2 and 6 weeks from the start of treatment. Treatment consisted of biweekly cycles of bevacizumab (an angiogenesis inhibitor) and irinotecan (a chemotherapeutic agent). At each study, ~3.5 mCi of FLT (or FDOPA) was administered intravenously and dynamic PET images were acquired for 1 hr (or 35 min for FDOPA). A total of 126 PET scans were analyzed. A three-compartment, two-tissue model was applied to estimate tumor FLT and FDOPA kinetic rate constants using a metabolite- and partial volume-corrected input function. MLR analysis was used to model OS as a function of FLT and FDOPA kinetic parameters at each of the 3 studies as well as their relative changes between studies. An exhaustive search of MLR models using three or fewer predictor variables was performed to find the best models.
Results
Kinetic parameters from FLT were more predictive of OS than those from FDOPA. Using information from both probes resulted in a better three-predictor MLR model (adjusted R2 = 0.83) than using information from FDOPA alone (adjusted R2 = 0.41), and only marginally different from using information from FLT alone (adjusted R2 = 0.82). Standardized uptake values (either from FLT alone, FDOPA alone, or both together) gave inferior predictive results (best adjusted R2 = 0.25).
Conclusions
For recurrent malignant glioma treated with bevacizumab and irinotecan, FLT kinetic parameters taken early after the start of treatment (absolute values and their associated changes) can provide sufficient information to predict OS with reasonable confidence using MLR. The slight increase in accuracy for predicting OS with a combination of FLT and FDOPA PET information may not warrant the additional acquisition of FDOPA PET for therapy monitoring in recurrent glioma patients.