Background: How to deal with the time-dispersive channel is the main challenge faced by the short-range optical communication systems. In this work a novel pseudo-noise sequence (PN) assisted pulse-amplitude modulated (PN-PAM) transmission scheme for short-range optical communication systems is proposed in this work. With the help of the PN based channel estimation, minimum-phase pre-filter and reduced-state sequence estimation based equalizer, the proposed PAM transmission scheme can significantly reduce the training overhead for channel estimation in the classical PAM systems using decision feedback equalizer (DFE). In addition, the proposed PAM transmission scheme can effectively avoid the error propagation phenomenon in the classical DFE. Results: Theoretical study shows that the proposed PAM scheme can achieve a 1.5 dB SNR gain with PAM-8 modulation over 50 m step-index polymer optical fiber (SI-POF) channel at a desired BER level of 1 × 10 −3 and 1.2 Gbps transmission rate. Furthermore the hardware experiment using commercially available components proves the improvements in the proposed PAM transmission scheme.
Conclusion:The novel PAM transmission scheme is compared to the optimized discrete multi-tone (DMT) transmission with bit-loading. The experimental results show that for a transmission distance less than 50 m over SI-POF, DMT systems outperform the PAM systems. However, for a SI-POF transmission over the distance longer than 50 m, the proposed scheme can reach a better performance than the DMT systems thanks to the advantage of a lower peak-to-average-power ratio.