A one-pass annealing–internal spinning is proposed to form a conical thin-walled shell with large curved generatrix. The structure of the blank used is designed based on product-size requirements. ABAQUS finite element software is used to simulate the internal spinning process of a conical thin-walled shell with large curved generatrix under small-end (process 1) and large-end (process 2) rotations. The microstructure of the products is subsequently analyzed. Results show that the spinning pressure of the skin part under process 1 is relatively stable, and that the strain and residual stress distribution are uniform, and the hardness and the mechanical performance is improved. The products of the two processes have an obvious circumferential fiber structure. The second phase grain size in the fracture morphology of the product formed under the process 1 is uniform, and its size is in the range of 2–6 µm. Whereas, the second phase distribution of the product formed under the process 2 is not uniform, the fine second phase grain size is in 1–2 µm, and the coarse second phase grain size is in 5–8 µm.