The bacterial adaptive immune system CRISPR-Cas9 has been appropriated as a versatile tool for editing genomes, controlling gene expression, and visualizing genetic loci. To analyze Cas9's ability to bind DNA rapidly and specifically, we generated multiple libraries of potential binding partners for measuring the kinetics of nucleasedead Cas9 (dCas9) interactions. Using a massively parallel method to quantify protein-DNA interactions on a high-throughput sequencing flow cell, we comprehensively assess the effects of combinatorial mismatches between guide RNA (gRNA) and target nucleotides, both in the seed and in more distal nucleotides, plus disruption of the protospacer adjacent motif (PAM). We report two consequences of PAM-distal mismatches: reversal of dCas9 binding at long time scales, and synergistic changes in association kinetics when other gRNA-target mismatches are present. Together, these observations support a model for Cas9 specificity wherein gRNA-DNA mismatches at PAM-distal bases modulate different biophysical parameters that determine association and dissociation rates. The methods we present decouple aspects of kinetic and thermodynamic properties of the Cas9-DNA interaction and broaden the toolkit for investigating off-target binding behavior.DNA | molecular biophysics | kinetics | sequencing | CRISPR C RISPR-associated protein 9 (Cas9) is programmed to bind its target DNA by a guide RNA (gRNA) that, once loaded, forms a ribonucleoprotein (RNP) complex. The Streptococcus pyogenes CRISPR system, the most extensively studied and applied system to date, targets a 23-bp DNA sequence containing (i) an "NGG" protospacer adjacent motif (PAM) element downstream of the single-guide RNA (sgRNA) target DNA (1) and (ii) a 20-bp sequence upstream of the PAM bearing complementarity to the gRNA (2). Genome engineering applications leverage the nuclease activity of the Cas9 RNP, but Cas9 engineered to lack the residues required for cleavage [dCas9 (nuclease-dead Cas9)] has proven valuable by enabling the creation of customizable and programmable DNA binding elements that can activate and repress gene expression with high precision (CRISPRa and CRISPRi) (3).The biophysical underpinnings of the Cas9 target search have been investigated both by directed biochemical assays (4, 5) and through measurements of off-target Cas9 activity (6-11). These studies have led to a model for binding wherein Cas9 proceeds through a series of steps starting with PAM recognition, followed by DNA melting, RNA strand invasion, and heteroduplex formation dependent on complementarity with a 5-10-bp seed. Structural data have further suggested that conformational changes in the HNH domain reposition catalytic residues and permit allosteric regulation of the RuvC domain. This conformational gating ensures that cleavage occurs only in the context of substantial homology between gRNA and target (12, 13).The specificity of Cas9 DNA binding is crucial for all potential applications of Cas9's RNA-programmable targeting. Localization of dCas9...