We introduce a novel method to design and implement a tunable dynamical tissue phantom for laser speckle-based in-vivo blood flow imaging. This approach relies on stochastic differential equations (SDE) to control a piezoelectric actuator which, upon illuminated with a laser source, generates speckles of pre-defined probability density function and auto-correlation. The validation experiments show that the phantom can generate dynamic speckles that closely replicate both surfaces as well as deep tissue blood flow for a reasonably wide range and accuracy.