Porous hydrogels such as agarose are commonly used to analyze DNA and water-soluble proteins by electrophoresis. However, the hydrophilic environment of these gels is not suitable for separation of important amphiphilic molecules such as native membrane proteins. We show that an amphiphilic liquid crystal of the lipid monoolein and water can be used as a medium for electrophoresis of amphiphilic molecules. In fact, both membrane-bound fluorescent probes and water-soluble oligonucleotides can migrate through the same bicontinuous cubic crystal because both the lipid membrane and the aqueous phase are continuous. Both types of analytes exhibit a field-independent electrophoretic mobility, which suggests that the lipid crystal structure is not perturbed by their migration. Diffusion studies with four membrane probes indicate that membrane-bound analytes experience a friction in the cubic phase that increases with increasing size of the hydrophilic headgroup, while the size of the membrane-anchoring part has comparatively small effect on the retardation.