This paper proposes a cloud detection algorithm for Earth observation images obtained by pushbroom satellite imagers. The pushbroom technology induces an inter-band acquisition delay leading to a parallax effect for the clouds. We propose a method exploiting this characteristic thanks to the analysis of the inter-band disparity. Several other features discriminating clouds are also defined and all are merged to build a robust a contrario statistical decision. Experiments applied on scenes acquired by various pushbroom satellites such as Sentinel-2, RapidEye and WorldView-2 show the effectiveness of the proposed method. In particular, we demonstrate a balanced accuracy rate close to 98% for cloud and non cloud classification for Sentinel-2 images.