Owing to their unique properties, use of microemulsion-based synthetic techniques for the generation of shape-controlled nanocatalyst is an area of great current interest. Nanocatalysts of any specific shape, morphology, surface area, size, geometry, homogeneity and composition are widely being prepared using the soft techniques of microemulsion. Easy handling, inexpensive equipment and mild reaction conditions make microemulsion an attractive reaction medium. Herein, a nanosized precursor reactant can be incorporated, leading to the formulation of a highly monodispersed metal nanoagglomerate with controlled size, shape and composition. Several factors such as presence of electrolyte, molar ratio of water to surfactant, nature and concentration of surfactant and solvent, size of water droplets and concentration of reducing agents influence the size of the nanoparticles. The reverse micelle method can be used for the fabrication of several nanosized catalysts with a diverse variety of suitable materials including silica, alumina, metals (e.g. Au, Pd, Rh, Pt), metal oxides, etc. The morphology, size distribution and shape of the nanocatalysts make them useable for a wide range of applications, for example, fuel cells, electrocatalysis, photocatalysis, environmental protection, etc. The recovery of nanoparticles from the reaction mixture is a challenge for the researchers. This chapter discusses the preparation of nanoparticles using microemulsion techniques, widely being used for the synthesis of nanocatalysts from a wide range of materials.