In recent years, brushless direct current motor (BLDCM) applications have been increased due to their advantages as low size, mechanical torque, high-speed range, to mention some. The BLDCM control is required to operate at high frequency, high temperature, large voltage, and quick changes of current; as a result of this kind of operation, the power drive lifetime is affected. The power drives commonly utilized insulated gate bipolar transistors (IGBTs) and metal oxide semiconductor field effect transistors (MOSFETs), which present power losses, on-state losses, and switching losses caused by temperature oscillations. Hence, the power losses are related to the command signals generated by the controller. In this sense, the BLDC motor drive controller design, frequently, does not take into account the power losses and the temperature oscillations, which cause the IGBT lifetime decrease or premature fail. In this chapter, a brushless DC motor drive is designed based on a fuzzy controller tuned with the particle swarm optimization algorithm, where the temperature oscillations and speed set points are considered in order to increase IGBT module lifetime. The validation of the proposed fuzzy-PSO controller is carried out by the co-simulation between LabVIEW™ and Multisim™ and finally analysis and conclusion of the work.